Supporting ordinal four-state classification decisions using neural networks

نویسندگان

  • Anurag Agarwal
  • Jefferson T. Davis
  • Terry Ward
چکیده

Many accounting and finance problems require ordinal multi-state classification decisions, (e.g., control risk, bond rating, financial distress, etc.), yet few decision support systems are available to aid decision makers in such tasks. In this study, we develop a Neural Network based decision support system (NN-DSS) to classify firms in four ordinal states of financial condition namely healthy, dividend reduction, debt default and bankrupt. The classification results of the NN-DSS model are compared with those of a Naïve model, a Multiple Discriminant Analysis (MDA) model, and an Ordinal Logistic Regression (OLGR) model. Four different evaluation criteria are used to compare the models, namely, simple classification accuracy, distance-weighted classification accuracy, expected cost of misclassification (ECM) and ranked probability score. Our study shows that NN-DSS models perform significantly better than the Naïve, MDA, and OLGR models on the ECM criteria, and provide better results than MDA and OLGR on other criteria, although not always significantly better. The effect of the proportion of firms of each state in the training set is also studied. A balanced training set leads to more uniform (less skewed) classification across all four states, whereas an unbalanced training set biases the classification results in favor of the state with the largest number of observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing

One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

Estimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?

Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...

متن کامل

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

A Review of Epidemic Forecasting Using Artificial Neural Networks

Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information Technology and Management

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2001